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ABSTRACT 

We study strongly Baire trees. The Cofinal Branch Principle is the state- 

ment tha t  every strongly Baire tree of height Wl has a cofinal branch. We 

show that  this principle implies that  the strong reflection principle holds, 

there are no Souslin trees and MA + (a-closed) holds. Also it follows from 

the Semiproper Forcing Axiom, and the Strong Reflection Principle does 

not imply the cofinal branch principle. 

1. I n t r o d u c t i o n  

In [7], Foreman-Magidor-Shelah proved that Martin's Maximum is consistent 

relative to the existence of a supercompact cardinal. They proved that Martin's 

Maximum implies the nonstationary ideal N S ~  1 is saturated, the Singular Cardi- 

nal Hypothesis holds, together with some other things. Shelah then showed that  

Martin's Maximum is equivalent to the Semiproper Forcing Axiom in [15]. Todor- 

cevic in [18, 19] (see [3]) formulated a Strong Reflection Principle and showed 

that  the consequences of Martin's Maximum in [7] follow from this Strong Reflec- 

tion Principle. Velickovic in [21] showed that a much weaker reflection principle 

implies the Singular Cardinal Hypothesis holds. In [5, 6], Feng-Jech studied the 

reflection principles and showed that Todorcevic's Strong Reflection Principle is 
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equivalent to that  every projective stationary set contains an increasing contin- 

uous E-chain of length wl. In this paper, we continue these works to study the 

fine combinatorial consequences of the Semiproper Forcing Axiom. Our focusing 

will be on (w, oc)-distributive partially ordered sets, Baire trees in particular. We 

will show that  if we assume every stronly Baire tree of height Wl has a cofinal 

branch, then the Strong Reflection Principle and M A  + (a-closed) hold and there 

is no Souslin tree. 

Let us first recall some basic terms from Jech [11, 13]. All undefined terms in 

this paper  are taken from Jech [11, 13]. All the partially ordered sets are assumed 

to be separative. Namely, if (P, <) is a partially ordered set, p, q are in P,  and 

p ~ q, then there is r _< p such that  r and q are incompatible (i.e., there is no 

r l  _< r such that  r l  _< q). Let (P, <) be a partially ordered set. D C P is dense 

in P if for every p E P there is q E D such that  q < p. D C P is open in P if for 

every p E D, for every q E P,  if q < p then q E D, i.e., D is downward closed. 

A C P is an antichain if for every p E A, for every q E A, if p ~ q, then p and 

q are incompatible. An antichain is maximal if every p E P is compatible with 

some member  of A, i.e., for every p E P,  there is r E A and there is q E P such 

that  q < r and q < p. F C P is a filter if F is not empty, F is upward closed, 

i.e., if p E F and q E P,  and p <_ q, then q E F,  and for every p E F,  for every 

q E F ,  there is r E F such that  r < p and r < q. Let N be a family of dense 

sets i n P .  A filter G C  P is generic over N if for every D E N, G M D ~ O .  A 

partially ordered set (P, <) is (w, co)-distributive if for every countable family F 

of dense open sets, the intersection of F is a dense subset of P.  Sometimes, it is 

also called Baire, in particular, when referring to trees. 

A tree T is a partially ordered set such that  {t E T l t <T s} is well-ordered 

under the tree ordering <T for all s E T. For a tree T, for t E T, the height of t, 

ht(t), is the least ordinal c~ which is isomorphic to {s E T I s <T t}. The height 

of the tree T, ht(T), is the least ordinal a such that  for all t E T, ht(t) < c~. For 

every c~ < ht(T),  the c~th level, denoted by T~, is the set of all t E T such that  

= ht(t). We use TI~ to denote the set of all t E T such that  ht(t) < c~. Notice 

that  this is a subtree of T. A branch of T is a maximal linearly ordered subset 

of T; the length of a branch is its order type. A branch is cofinal if its length is 

the height of T. When we consider a tree as a forcing notion, we consider the 

reverse order of the tree ordering. Or sometimes we just simply consider the tree 

growing downward. This should not cause any confusion. For example, we say 

that  a tree is a Baire tree if it is (co, co)-distributive as a forcing notion. We will 

be mainly interested in trees of height wl in this paper. 
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Trees have long been interesting objects of study in set theory. Given a tree, 

a very basic question is whether there is a cofinal branch. For trees of height w~, 

one of the first interesting examples is an Aronszajn tree (a tree of height wl, each 

level is countable, but there is no cofinal branch). Then come Souslin trees (trees 

of height Wl, each level is countable and each maximal antichain is countable). 

Every Souslin tree is an Aronszajn tree. However, the existence of a Souslin 

tree is independent of the standard set theory, ZFC (see Jech [11] for references 

regarding these facts). Trees of height wl are also divided into two classes: special 

trees and nonspecial trees. A special tree is a tree which is a union of countably 

many antichains. It is now known that under Martin's Axiom, every Aronszajn 

tree is special, while under the Proper Forcing Axiom, every tree of height wl 

and cardinality R1 is special (see [2] and references there). Also it is known that 

in the constructible universe of Ghdel, Sonslin trees exist and there are Kurapa 

trees (trees of height wl with each level countable, and there are R2 many cofinal 

branches). (See Jech [11] for references on these facts.) 

Nonspecial trees have been extensively studied (see [17] and the references 

there). Notice that Baire trees are nonspecial trees. Todorcevic reformulated 

Rado's conjecture in terms of nonspecial trees in [16], namely, if a tree is non- 

special then it has a nonspecial subtree of size R1, and he derived many interesting 

consequences in [20]. Recently, we showed that Rado's conjecture also implies 

the nonstationary ideal on Wl is presaturated in [4]. 

All of these lead us to consider the following general question: Which trees of 

height wl have cofinal branches? 

We will introduce a class of trees, strongly Baire trees, in section 3. The 

strongly Baire property is a natural strengthening of the Baire property. Al- 

though there are Baire trees of height Wl without having cofinal branches, every 

strongly Baire tree may have a cofinal branch. In fact, we propose a cofinal 

branch principle which says that every strongly Baire tree of height wl has a 

cofinal branch. It follows from the Semiproper Forcing Axiom. In section 4, we 

prove that  this cofinal branch principle implies the Strong Reflection Principle 

holds, there is no Souslin tree, and M A  + (a-closed) holds. In section 2, we present 

a connection between stationary sets and (w, co)-distributivity. 

2. Stationary sets, trees and (w, oc)-distributivity 

Assume that  a is a regular uncountable cardinal and £ > a is a cardinal. Let A 

be a set of cardinality £. We use P,~(A) to denote the set of all subsets of A of 

size < a. A set C C P,~(A) is c losed if for every C-increasing countable sequence 
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(x~[ a < 0) from C of length 0 < a (x~ C_ x# for all a < /3  < 0), the union of 

the sequence U{x~[ a < 0} is also in C. C is u n b o u n d e d  if for all x E P~(A) 

there exists some y E C such that x C y. C is a c lub  if C is both closed and 

unbounded. A set S C P~(A) is s t a t i o n a r y  if for every club C, the intersection 

S N C is not empty. 

THEOREM 2.1 (Jech [10]): (1) All the clubs on P~(A) generate a ~-complete 

normal filter. Namely, if (Cal a E A) is a sequence of sets closed and unbounded 

in P~(A), then 
C = {x E P~(A)I Va • x x • Ca} 

is also closed and unbounded in P~(A). C is called the diagonal intersection of 

the sequence. 

(2) If  S is a stationary set in P~(A), f: S --+ A satisfying that f (x )  • x for al! 

x • S, then there exists a stationary T C S such that f is constant on T. 

Another basic fact is that  given two sets A and B of the same uncountable 

cardinality, then there is a natural correspondence between the closed and un- 

bounded sets and stationary sets. Namely if f :  A ~ B is a bijection, C C P~(A) 

is a set closed and unbounded in P~(A), letting C* -- { f "X l  X • C}, then C* is 

a set closed and unbounded in P~(B) (where I ' X  denotes the set {f(a)l  a • Z}) .  

If S is a set stationary in P~(A), letting S* -- { f " X  I X • S}, then S* is a set 

stationary in P~(B). 
Assume that  B C A. Let C be a set closed and unbounded in P~(A). Then 

{X M B I X • C} is a set closed and unbounded in P~(B). Conversely, if C 

is a set closed and unbounded in P~(B), then {X • P~(A)[ X n B • C} is a 

set closed and unbounded in P~(A). Hence, if S is a set stationary in P~(A), 

then {X M B I X • S} is stationary in P~(B). If S is stationary in P~(B), then 

{X • P~(A)I X M B • S} is stationary in P~(A). 
We will be interested mainly in the case that a = wl. For an uncountable set 

A, we use [A] ~ to denote the set of all infinite countable subsets of A. This is a 

set closed and unbounded in Pw1 (A). 

If f :  [A] <~ --+ A and X C_ A, then we say that X is closed under f if X 

is nonempty and for all e • IX] <W, f(e) • X. I f X  C_C_ A, the closure of X 

under f is the smallest Y ~ X which is closed under f .  Usually we denote the 

closure of X under f by clf(X).  Notice that given f :  [A] <~ -+ A, the family 

of all countable subsets of A which are closed under f is closed and unbounded 

in [A] ~. In particular, given an uncountable structure of countable language 

endowed with a well ordering, the set of all countable elementary submodels is 

closed and unbounded. 
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THEOREM 2.2 (Kueker [14]): Assume that C is closed and unbounded in [A] ~'. 

Then there exists an f: [A] <~ ~ A such that every countable subset X of A 

which is closed under f is in C. Hence S C_ [A] ~ is stationary if  and only if  for 

every f:  [A] <w -4 A, there exists an x E S such that x is Nosed under f ,  i.e., 

f (e)  E x for all e E Ix] <~. 

Let n be a regular cardinal >_ w2. Let H~ be the set of all sets hereditarily of 

size less than n. We assume that  H~ is endowed with a well ordering. Notice 

that  [H~] ~ C_ H~. We are interested in such structures because (H~, E) is a model 

of Z F C  minus the power set axiom (when n is large, a sufficient initial segment 

of the power set axiom will hold). Essentially, when we choose large enough ~, 

(H~, E) will be a good model of set theory satisfying our needs. We are interested 

in the stat ionary sets on the spaces of countable sets, primarily because there is 

a closed and unbounded set of countable elementary submodels of (H~, E) and 

these countable models are rich enough to have many desired properties. For 

example, if N is a countable elementary submodel of H~, then N n wl is a 

countable ordinal. This follows from the fact that  if x E N is countable then 

x C N .  

We use N -~ M to denote that  N is an elementary submodel of M as usual. 

Recall from [6] that  a set S C_ [H~] ~ is projective stationary if for every sta- 

t ionary A C_ Wl, the set {N E S[ NMwl  E A} is stationary. Projective stat ionary 

sets are natural  objects which are between stationary sets and clubs. We will use 

projective stat ionary sets to define strongly Baire partially ordered sets. Before 

we do that ,  let us see some essential connections between stationary sets and the 

Baire property. This will motivate the concept of strongly Baire trees in the next 

section. 

Let P be a partially ordered set. Let n be a sufficiently large regular cardinal. 

P E N -4 H~ is countable. A condition p E P is a s t r o n g  m a s t e r  c o n d i t i o n  

for  N if for every dense D E N,  there exists a condition q E D M N such that  

p ~ q (see [7]). Also, a sequence (p,~[ n ~ w} is a generic sequence for N if for 

every dense D E N, there is some n < w such that  Pn E D M N and p,~ 7_ Pn+l for 

all n < w. Notice that  for every countable model N, a generic sequence exists. 

Recall that  a partially ordered set P is (~, oo)-distributive if the intersection of 

any countably many dense open sets is dense. We give below a characterization 

of (w, oe)-distributivity in te rm of stationary sets and strong master  conditions. 

THEOREM 2.3: Let P be a partially ordered set. Then P is (w, oo)-distributive 

i f  and only i f  for every p E P, for every sufficiently large regular cardinal ~, the 

set Sp defined by 
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N E Sp i f  and only i f  N -~ H~ is countable, p c N ,  and there exists some 

q E P such that q ~_ p and q is a strong master condition for N 

is stationary in [H~] ~. 

Consider the cut-and-choose game on P. Player I begins by selecting some 

p E P and a maximal antichain A0 below p. Player I I  responds by choosing 

some P0 E A0. At the nth move, I plays a maximal antichain An below p and 

I I  chooses p~ E A~. I I  wins the play if and only if there is a q C P such that 

q_<Pn for a l l n < w .  

THEOREM 2.4 (Jech [12]): P is (~,c~z)-distributive if  and only if  I has no 

winning strategy. 

We apply this game and this theorem to prove the previous theorem. 

Proo~ =~ Assume that P is (a;,oe)-distributive. Let p E P. Let A be a 

sufficiently large regular cardinal. We show that Sp is stationary. 

Let f :  [H~] <~ --~ HA and C S be the set of all elementary countable submodels 

which are closed under f .  For each N C Cf, we fix an enumeration (A N ] n < w) 

of all maximal antichains below p which are in N. Let 7r: w --+ ~ × a; be a paring 

function such that (Tr(n))0 __ n, where 7r(n) = ((Tr(n))0, (Tr(n))x) for all n < a;. 

We define a strategy ~r~ for I as follows: 

Let No C C S be the closure of {p, P} under f and the skolem functions. Let 

Ao = A N(~C°))° At the 0th move, I plays p and Ao. For a given Po E Ao, let 
( ~ ( o ) h  • 

N1 E C[T be the closure of No tO {P0} under f and the skolem functions. Let 

A1 = Ai~l(;~l°. At the 1st move, I plays A1. In general, let pn E A~ be given. 

Let N~+I be the closure of Nn t2 {p~) under f and the skolem functions and let 

An+l = A g<~<~+~))° At the (n + 1)th move, I plays An+l. (,/1-(79 JV 1) ) 1 " 

This defines a strategy for [. At the end of each such play, when I follows 

this strategy, if N is the union of all N~'s, then N C C S and (An[ n < w) 

enumerates all maximal antichains below p which are in N. If I I  wins the play, 

then any witness will be a strong master condition for this model N. Since P is 

(w, ec)-distributive, by the quoted theorem above, I has no winning strategy. In 

particular, the strategy a~ defined above cannot be a winning strategy. Therefore 

there is a play in which I follows the strategy but I I  wins the play. 

This shows that Sp is indeed stationary. 

¢= Given p E P and a countable sequence (Dnl n < w) of dense open sets, 

let ~ be a sufficiently large regular cardinal. Let S v be the stationary sets of 

countable models with a strong master condition below p. Let N C S v be such 

that  the sequence of dense open sets is in N. Then any strong master condition 
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for N below p witnesses tha t  the intersection is not empty  below p. Hence the 

intersection must  be dense. | 

A sequence (No l a < 0) of countable submodels  of H~ is an i n c r e a s i n g  

c o n t i n u o u s  c - c h a i n  of length 0 if for all a < 0 (No -< H~) and for all c~ < / 3  < 0 

(No C N~), and if a < 0 is a limit ordinal, then No = [J~<o N~. 

An interesting fact about  the s ta t ionary sets of countable models is tha t  if 

S C_ [H~] ~° is s ta t ionary  then S contains an increasing continuous E-chain of 

length c~ for every countable ordinal c~. We will need the following well-known 

lemma. For a proof, see [6] for example. 

LEMMA 2.1: I t 'S  C [H~] ~ is stationary, then for every countable ordinal a, there 

exists an increasing continuous C-chain 

of length a + i such that N7 C S for all V <- a. 

There is a natural connection between stationary sets and Baire trees. 

Let ~ >_ w2 be regular. Let S C [H~] ~. Associated with S is a tree Us defined 

as follows: t C Us if and only if there exists some countable ordinal a such that 

t: (~+ 1 --+ S and t is an increasing continuous c-chain of length ~+ I. Sometimes 

we refer to Us as the canonical tree of S. Certainly Us is a tree of height at 

most wl. In fact, if S is stationary, then Us has height wl as the above lemma 

indicates. Todorcevic in [20] showed that if S is stationary, then Us is a Baire 

tree. It may be possible this is known to many other people. In that case, we just 

take [20] as one example of references. It is natural to ask if the converse would 

be true. Obviously there are some difficulties. Whether the tree Us is Baire 

or not is a question relating only to the tree itself, while the question whether 

S is stationary is related to certain spaces. For instance, S C_ [H~] W may be 

stationary in [H~] ~ but certainly not stationary in [H~+] ~. The corresponding 

tree Us will be a Baire tree in either case. We need certain conditions to connect 

the tree Us to the spaces under discussion, just as S does. This leads to a kind 

of density property essentially. 

Let us call a tree T a normal  tree if for every t C T, for every a < ht(T) ,  if 

ht(t) < a, then there is an s e T such tha t  t _< s and ht(s) >_ a. 

Notice tha t  for S C_ [H~] 0~, S is unbounded  in [H~] ~ and Us is a normal  tree 

of height Wl if and only if for all a < wl, for all x C H~, the following sets Do  

and D~ are dense in Us: 

Do -= {t C Usl a <_ ht(t)},  
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D~ = {t E Usl 3/3 < ht(t)x E t(/3)}. 

(We thank Professor T. Jech for suggesting that we use normal trees instead of 

the density property in formulating the following theorem.) 

THEOREM 2.5: Let ~ >_ w2 be a regular cardinal. Let S c_ [H,~] ~ be unbounded 

in [H,~] ~ and Us be the canonical tree of S. Then the following are equivalent: 

(1) S is stationary in [H~] ~. 

(2) Us is a normal tree of height wl and for every su~ciently large regular A, 

the set S* defined by 

N E S* i f  and only if  N E [H:~] ~ and S, Us E N and for all a E N A Us 

there exists a strong master condition t E Us for N such that t <_ cr 

is stationary in [H~] ~. 

(3) Us is a normal tree of height Wl and Us is a Baire tree. 

(4) Us is a normal tree of height ~)1 and for every t E Us, for every sufficiently 

large regular A, the set S~ defined by 

N E S~ if  and only i f N  E [Hx] ~ and S, Us , t  C N and there exists a strong 

master condition a E Us for N such that a < t 

is stationary in [H~] ~. 

Proob (1) ~ (2). We assume that S is stationary in [H~] ~. First let us check 

that  Us has the density property with respect to H~. To see this, let a < wl and 

x E H ~ .  Let t E Us. 

Then the set St = { N  E S I {t, x} C_ N} is stationary in [H~] °~. Let (Mr[ 7 -< a) 

be an increasing continuous e-chain from St. We then define a(fl) = t(/3) for all 

/3 E dom(t) and a(/3) = M~ for all/3 such that dora(t) <_/3 <_ a. Then we have 

that  a < t and a E D~ MDx. 

Let A be a sufficiently large regular cardinal. Let f : [H~] <~ ~ H~. Let 

N -4 Hx be countable such that  N is closed under f and N N H~ E S and 

{H~,S, Us} C N.  Let 5 = N N w l a n d t  E N N U s .  Let (Dn[ n < w )  b e a l i s t  

of all dense subsets of Us which are in N. Starting from to = t, inductively pick 

t,~+l E D~ M N so that  t,~+l _< tn. Let 0,, be the largest countable ordinal in 

dom(tn).  By elementarity and a density argument, we have ~ = U~<~ 0N and 

N N H~ = Un<~ tn(O~). Therefore, 

a= U t~U{(5, NNH~)} 

is in Us, a condition stronger than all t,~. Hence a is a strong master condition 

for N which is closed under f .  Therefore, S* is stationary in [H~] ~°. 
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(2) ~ (3). This follows from the direction ¢= of the previous theorem. 

(3) ~ (4). This follows from the direction ~ of the previous theorem. 

(4) ~ (1). Let f :  [H~] <~ -+ H~. Let A be a sufficiently large regular cardinal. 

Let N ~ Hx be countable such that  f ,  S, Us, H~ are all in N and N has a strong 

master  condition a E Us. Let a = N Awl. Since Us has the density property 

with respect to H~, by elementarity and a density argument, being a strong 

master  condition for N,  we must have a (a )  = N n H~. Hence, a ( a )  must be 

closed under f and a(a) E S. 

This shows that  S is stat ionary in H~. | 

3. S t r o n g l y  B a i r e  t r e e s  a n d  a cof inal  b r a n c h  p r i n c i p l e  

In this section, we first give a natural strengthening of the (w, c~)-distributivity 

in the direction of Theorem 2.3 of the previous section. Namely, we will define 

the strongly Baire property, and then give some characterizations, including a 

game theoretic one. 

Definition 3.1: Let P be a partially ordered set. We say that  P is s t r o n g l y  

B a i r e  if for every sufficiently large regular cardinal ~, for every p E P,  the set 

S p defined by 

N E S~ if and only if N ~ H~ is countable and p E N and there exists 

some q E P such that  q < p and q is a strong master condition for N 

is projective stat ionary in [H~] ~. 

Certainly, every strongly Baire partially ordered set is (w, ~)-dis t r ibut ive .  

However, the converse is not true, as the following example indicates. 

Example 3.1: Let A, B be two disjoint stationary subsets of wl. Let T be the 

tree of all countable closed subsets of A, ordered by end extension. This tree is 

a Baire tree of height wl (see [13], for example) but not strongly Baire. And this 

tree has no cofinal branch. 

It  turns out these are the only counterexamples. 

THEOREM 3.1: P is strongly Baire ff and only ff P is (w, c~)-distributive and 

forcing with P preserves stationary sets of wl. 

Proof: ~ P certainly is (w, cx~)-distributive by Theorem 2.3. 

Let S C_ wl be stationary. Let C be a name for a c l u b i n w l .  Let t E T b e  

a condition. Let N be a countable submodel containing t, S, C and N N wl E S 

and N has a strong master  condition a <_ t. Then a iF N N wl E C. 
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Assume that P is (w,c~)-distributive and forcing with P preserving 

stationary subsets of wl. We shall prove that P is strongly Baire. 

First, let us prove the following lemma which will also be used later. 

LEMMA 3.1: Assume that P is (w, cx~)-distributive. Let ~ be a sut~ciently large 

regular cardinal. Let A = H~ and B = [H~] ~. Then there is a name ] for a 

function from [A] <~ to A such that 

Ik VN E [A] ~ = B,  N -< A, N is closed under ] ~ G is generic over N. 

Proof: Let G be a P-generic filter over V. In V[G], [A] ~° = B, as the forcing is 

(w, cx~)-distributive. 

CLAIM: {N E [A]W[ N -< A , G  is generic over N}  contains a closed and un- 

bounded subset of [A] ~. 

Assume otherwise. Then 

S -- {N E [A]~I N -< A, 3 a dense set D E N(G  n D n N -- 0)} 

is stationary in [A]% So there is some dense D E A such that 

S* = {N E [A]~I N -~ A, D E N(G n D n N -- 0)} 

is stationary in [A] ~. 

Let S , / 9  be names for these objects and let q E G be a condition that  forces 

the above property of the objects. 

Back to the ground model V. Let p < q be a condition such that for some 

dense set D, p forces that /5 -- D. Let P0 E D be such that P0 < P- Then 

po I~- po E D M G. 

Let C be a closed and unbounded set of models N such that every member of 

C contains Po, D, and/9 .  

Let G be a generic filter over V such that P0 E G. In V[G], C is still closed 

and unbounded. Let N E C N S/G.  Let N be a name for it and let Pl E G be 

such that Pl <_ P0 and Pl forces N E C N S. 

Back to V. Get some N E C and some P2 _< Pl so that P2 IF N = N. Then 

P2 Ikp0 E N N D n G  andp2 I I- /)  E N E ~' andp2 Ik G N / ~ N D  = (~. This is a 

contradiction. 

This finishes the proof of the lemma. I 

We proceed to prove the theorem. 

Let T C_ Wl be stationary. Let g: [H~] <~ --+ H~ be a function. Let p E P.  
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Let p E G be a generic filter over V. In V[G], T remains stationary. So there 

is some countable  N -< A such tha t  N is closed under g, N A wl E T, and there 

is a sequence (p~ I n < co) from G such tha t  (p~ [ n < w) is a P-generic  sequence 

for N,  by the previous lemma. 

Let / ~ , & , i  be names and let q E G be such tha t  q _< p and q forces tha t  

is a countable  e lementary submodel  of A, N is closed under  the funct ion g, 

& = fi/N aJ1, & E T, 6: w --+ P A N  is a generic sequence for N and for all n < w, 

E 5. 
Back to V. By (o~, oe)-distributivity, let r _< q be a condition, and let N E B, 

a E wl, t: w --+ N A P be such tha t  

r IF-/~ = N, & = a ,  ~ = t .  

So N is closed under  g, a = N ~ wl, a E T and t is a generic sequence over N,  

and r I~- Vn < wt(n) E G. Therefore, r is a strong master  condit ion for N.  

This finishes the proof. I 

We now give a game theoretic characterization of a strongly Baire partially 

ordered set. 

Given a part ial ly ordered set P ,  consider the following game ~ (P ) :  

Player  I s tarts  the game by selecting a condition p E P ,  and a s ta t ionary  

subset A c w~. 

At the n th  move, Player I plays a name for an ordinal, &n; Player I I  responds 

by choosing an ordinal ~/,~ and a countable ordinal fl~. 

At  the end of w many  steps, I I  wins the game if and only if there exists a 

condit ion q _< p such tha t  Vn < coq It- &,~ = 1'n and, letting 

5 = U{9 'n l  n < a.,&:~ <~1}, 

if (~ > Un<w ~n, then (~ E A. 

THEOREM 3.2: P is strongly Baire if  and only i f  I does not have a winning 

strategy in the game  G(P).  

Proof." ~ Assume tha t  P is strongly Baire. We show tha t  I has no winning 

strategy. 

Given a name for an ordinal, there corresponds a maximal  antichain. Let us fix 

such a correspondence f .  Let  ~ be a sufficiently large regular cardinal such tha t  

every relevant parameter  occurs in H~. Assume that  I has a winning s t ra tegy 

c~. We are going to derive a contradiction. Let p and A be the condit ion and 
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the s tat ionary subset initiated by a. Let N -~ H~ be a countable model such 

that  {a, P, f}  C N,  and N M Wl C A, and N has a strong master  condition 

q < p. Being strongly Baire, we have such N. Let (Wnl n < w> be a list of 

all maximal  antichains in N. Let {~,~I n < w> be an enumeration of N N Wl. 

At the i th move, I I  responds as follows: let Wj = f(&i) be the corresponding 

parti t ion associated to the ordinal name &i, played by I according to a,  let 

pj E W j M N  be such that  pj > q, and let 7i be the ordinal 7 such that  pj It- &~ = % 

I I  then plays 7i, ~i. Certainly this game can continue w many steps. At the 

end of the play, q It- &,~ -= 7n for all n < w and N M 0.) 1 = Un<w ~n, and 

(f -= U{7~[ % < Wl} _< N MWl, if 5 = N NWl, then (f C A. Hence I I  wins the 

game. But  I follows the strategy a which is supposed to be a winning strategy 

for I .  This is a contradiction. 

¢= Assume that  I does not have a winning strategy. We want to show that  P 

is strongly Baire. 

For each countable ordinal a < w l r  let us fix a maximal antichain B~ to 

represent the canonical name for a.  And" given a maximal antichain, there cor- 

responds a name for an ordinal. Let us fix such a mapping g such that  g(B,~) is 

the canonical name for a.  

Let p E P.  Let T C Wl be stationary. 

Let A be a sufficiently large regular cardinal. Let f :  [H~] <~ --~ H~ and C S 

be the set of all elementary countable submodels which are closed under f and 

p , g , T  are members.  For each N e Cf ,  we fix an enumeration (ANI n < w} of 

all maximal  antichains below p which are in N. Let r :  w -+ w × w be a paring 

function such that  (~r(n))o < n. 

We define a strategy o "(p'T) for I as follows: 

Let No E C I be the closure of {p ,T ,g ,P ,{Ba]  a < Wl)} under f and the 
A N(~(°))° Let skolem functions. I starts the game by playing (p, T). Let A0 = (~(0)h " 

&o = g(Ao). At the 0th move, I plays &0. For a given ordinal 70 and a countable 

ordinal ~0, let N1 e C/Nbe the closure of No U {70,/~0} under f and the skolem 

functions. Let A1 = A(~((I(~: ° and let &l = g(A,) .  At the 1st move, I plays &l. 

In general, let 7n,fi,~ be given. Let N,~+I be  the closure of Nn U {7~,fi~} under 

A N('("+~))° arid let &n+l = g(A,~+l). f and the skolem functions and let A~+I = (~(n+l)h 

At the (n + 1)~h move, I plays &n+l. 

This defines a strategy for I .  At the end of each such play, when I follows this 

strategy, if N is the union of all N,~'s, then N E C I and (A,~ I n < w} enumerates 

all maximal  antichains below p which are in N. If I I  wins the play, then any 

witness will be a strong master  condition for this model N.  Also, because the 
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canonical names for countable ordinals < N 6~ Wl are in N and B~ 6 N for all 

a < N n Wl, all the ordinals smaller than N N wl must be played as some Vn by 

I I  at some stage n. Therefore 

~ = U{-7,~l I,,~ < w 1 }  = N n w 1 .  

So (~ > U~<~/~n. Tha t  I I  wins the play implies that  N g~ wl = 5 E T. Since I 

no winning strategy, the strategy a~ p'T) defined above cannot be a winning has 

strategy. Therefore there is a play in which I follows the strategy but I I  wins 

the play. 

This shows that  P is indeed strongly Baire. | 

Remark: Let us notice that  for every partially ordered set P,  I I  has no winning 

strategy for the game. Let a be a strategy for I I .  Let N be a countable elemen- 

tary  model of some H~ for some sufficiently large regular cardinal ~ such that  

P, cr are all in N. Let T1 and T2 be two disjoint stationary subsets of Wl which 

are in N. Consider two plays in which I enumerates all names for ordinals in 

N but initiates with T1 and T2 respectively. I I  plays according to the strategy 

a. As N is closed under a,  and all names for ordinals smaller than N Awl are 

enumerated, I I  can win at most one of the plays, not both of the plays, following 

a. Hence a is not a winning strategy for I I .  

We are mainly interested in strongly Baire trees. It seems that  being strongly 

Baire is a reasonable property to imply the existence of a cofinal branch for trees 

of height wl. However, being Baire is too weak, as we have seen from the previous 

example. Keeping this is in mind, it seems natural for us to consider the following 

cofinal branch principle. 

COFINAL BRANCH PRINCIPLE (CBP) :  

Every strongly Baire tree of  height w] has a cofinal branch. 

Notice tha t  the Cofinal Branch Principle can be restated as follows: 

I f  T is a tree of  height 021 and forcing with T preserves stationary sets of  wl, 

then T has a cofinal branch. 

This is based on the fact that  if forcing with a tree T of height wl preserves 

s tat ionary sets of o~1, then T is (w, oo)-distributive. 

This cofinal branch principle follows from the Semiproper Forcing Axiom. Re- 

call that  a partially ordered set (P, _<) is semiproper if for sufficiently large regular 

cardinal ~, there is a function f : [H~] <~ ~ H~ such that  if N -~ H~ is closed 
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under S, then for every p E P N N, there is a condition q _ p such that  if & E N 

is a name for a countable ordinal, then q It- & E N. The Semiproper Forcing 

Axiom is the following statement: 

If P is a semiproper partially ordered set, (D~ I a < Wl) is a sequence of 

dense sets in P,  then there is a filter G C_ P such that  G (3 D~ is not empty 

for every a < wz. 

THEOREM 3.3: SPFA implies CBP. 

Proof." Let T be a strongly Baire tree. By the previous theorem, forcing with T 

preserves stat ionary sets of wl. By Shelah's theorem, T is semiproper under the 

Semiproper Forcing Axiom. Applying SPFA, we conclude that  T has a cofinal 

branch. II 

4. S o m e  c o n s e q u e n c e s  of  C B P  

In this section, we derive some consequences of the Cofinal Branch Principle. 

First let us recall from [6] that  the Projective Stationary Reflection Principle 

states for regular ~ > w2, that  if S C [H~] ~ is projective stationary, then there 

is an increasing continuous sequence (N~] ~ < w) of countable models from S. 

It  is equivalent to Todorcevic's Strong Reflection Principle. Hence it has many 

interesting consequences (see [6, 3] for more on this). 

THEOREM 4.1: CBP implies the Projective Stationary Reflection principle. 

Proofi Let n > w2 be a regular cardinal. Let S C [H~] ~ be a projective 

stat ionary set. Let Ts be the canonical tree associated with S. 

CLAIM: TS is strongly Baire. 

Given this claim, by CBP, Ts has a cofinal branch. Any cofinal branch gives a 

continuous increasing Gchain  from S of length O~l. 

We now proceed to prove the claim. 

Let fl be a sufficiently large regular cardinal. Let f :  [H~] <~ --4 Hx and A C_ Wl 

be stationary. Since S is projective stationary, we can find a countable N -< HA 

such that  N is closed under S, N n w l  E A, and N n H~ E S and N contains all 

the parameters  needed. Starting with any t E Ts N N, inductively construct a 

countable sequence (tnl n < w) so that  tn+l _< tn and tn+l E N n D,~, where Dn 

is the n th  dense open subset of Ts in N. Let 5 = N n Wl. Define 

a =  U t ~ u { ( ~ , g n H ~ ) } .  
n<oJ 
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Then a is a desired strong master  condition for N. 

This shows that  Ts is a strongly Baire tree. | 

Remark: A version of Theorem 2.5 in this context is actually true. Namely, for 

unbounded S c [H,~] ~, let Ts be the canonical tree associated with S. Then S 

is projective stat ionary if and only if Ts is a normal tree of height wl and Ts is 

strongly Baire. 

COROLLARY 4.1: Assume the Cofinal Branch Principle. Then the nonstationary 

ideal on wl is saturated, 2 ~° = R2, and the Singular Cardinal Hypothesis holds. 

Proof'. By Todorcevic [19], the Strong Reflection Principle, therefore CBP, im- 

plies that  ~ 1  = ~; for all regular tc > 81. By Silver's theorem this gives the 

Singular Cardinal Hypothesis as well as 2 ~° _< lq2. By a result of Gregory [9], 

CBP implies that  2 ~° = 2 ~' .  (I take this opportunity to thank the referee for 

pointing this out to me.) Also see Velickovic [21], Woodin [22] as well as Feng- 

Jech [6]. | 

THEOREM 4.2: Every Soustin tree is strongly Baire. 

Proof: Let T be a Souslin tree. Let ~ be a sufficiently large regular cardinal. Let 

N -< H~ be a countable elementary submodel such that  T E N. Let c~ = N Ct wl. 

Then every member  of the maximal antichain T~ is a strong master  condition for 

N. This is because if t E T~, A E N is a maximal antiehain, then A C N and 

any condition in A which is compatible with t must be an initial segment of t. 
| 

THEOREM 4.3: CBP implies there is no Souslin tree. 

Proof: This follows from the previous theorem and CBP. If there were a Souslin 

tree T, then T would have a cofinal branch by CBP. | 

Recall that  MA+(a-closed) is the statement that  if P is a a-closed forcing 

(every countable decreasing sequence has a lower bound), S" is a name for a 

s tat ionary subset of wl, <D~[ a < Wl) is a sequence of dense sets in P,  then there 

is a filter G C_ P such that  G n D~ is not empty for all c~ < wl, and 

{c~ < Wll 3p E Gp IF (~ E S} 

is s ta t ionary in wl. Shelah in [15] proved that  the Semiproper Forcing Axiom 

implies M A + (a-closed). 
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We now show that  the cofinal branch principle implies MA+(a-closed). The 

basic part of the proof is due to Shelah. We use trees. The main idea is to code 

needed generic objects by branches of a tree. 

THEOREM 4.4: CBP implies MA+(a-closed). 

Proof: Let P be a a-closed forcing notion. Let :~ be a name for a stationary 

subset of wl. Let (D~ I a < wl) be a sequence of dense subsets of P. For each 

a < wa, let P~, S~ and D~ for /3 < Wl be an isomorphic copy. Let P* be 

the product  of the P~'s with countable support. Let S* be a P* name for the 

diagonal union of the S~'s. For each p E P,  we use spt(p) to denote the support 

of p. Namely, 

spt(p) = < 0;11 # 1}. 

LEMMA 4.1 (Shelah [15]): Assume that the nonstationary ideal on Wl is satu- 

rated. Then there is a stationary subset A c_ oj1 such that Wl - A is stationary 

and for every stationary B C wl - A, P* IF B 0 S* is stationary. 

By Corollary 4.1, the nonstationary ideal on 0;1 is saturated under CBP. Let 

us fix a stationary set A C_ 0; as given by Shelah's lemma. 

We define a tree T as follows: 

( f ,g)  E T if and only if (1) for some countable ordinal a, f :  a + 1 -+ P* 

and 9: a + 1 -+ wl, (2) g is strictly increasing and continuous, and (3) for 

/3 < fl' < a, f (~ ' )  <_ f (~) ,  and (4) for fl < a, g(~) < sup(spt( f(~)))  and 

f (Z)  It- g"(f~ + 1) C_ A U S*, and for all ~' _< g(f~), for all 5 C spt( f (~))  either 

f (~)(5)  I~- 3' E S~ or f(~)(5)  It- 7 ~ S~, and there is some p E n~ such that  

_ p. 

The order of T (growing downward) is by extension. 

LEMMA 4.2: T has height wa. 

LEMMA 4.3: T is strongly Baire. 

We shall prove these two lemmas by proving several lemmas in the following. 

Given these two lemmas, we can finish the proof of the theorem as follows. 

Let ((f~,g~)l ~ < Wl} be a cofinal branch of the tree. Let g --- U~<o~l g~" Let 

f = [.J~<~l f~. Then g: Wl -~ Wl is a strictly increasing continuous function. Let 

C be the range of g. Then C is a closed and unbounded subset of Wl. f :  Wl --+ P* 

is a sequence of comparable conditions. (a < ~ < wl ~ f ( a )  >_ f(/3).) 

Let G -- {p ~ P*I f ( a )  < p for some a < Wl} and, for each a < wl, let 

G~ --- {p E P-I f ( f l ) (a)  < ,  p for some fl < wl}. 
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Then C c A U :~*[G]. Therefore, there is some a < wl such that  S~[G~] is 

s tat ionary and G~ meets all the dense sets D~ for ~ < wl. II 

We now proceed to prove the two lemmas. 

LEMMA 4.4: For p E P*, and p < sup(spt(p)), the set Dp, v defined by 

r E Dp,p i f  and only i f r  E P*, r <_ p, and for all fl < sup(spt(p)), for ali 

<< p, there is s o ~ e  s • D~ s~ch that  ~ > ~(~), and either ~(~) ,~ ~ • S~ 
or ~(~) IF ~ ¢ S~ 

is dense below p. 

Proof: It  follows from the a-closeness. 

LEMMA 4.5: Assume that p E P* and x i s a  closed bounded subset of Wl. Assume 

that p IF x C A U S* and that  max(x) < sup(spt(p)). Then there is some q • P* 

such that q < p, sup(spt(q)) > snp(spt(p)) and for al~/~ < sup(spt(q)), for aU 
7 -< max(x),  either q(/~) tF 7 • S~ or q(~) IF 7 ¢ S~ and there is some s E D~ 

such that s >_ q(j3). 

(We will call such q a dec i s ive  c o n d i t i o n  with respect to x.) 

Proof: Let p • P*. Let x be a closed bounded subset of wl. Let 5 = max(x).  

Let P0 • D6,v. Inductively, let Pn+l • D~,pn be such that  sup(spt(pn+l)) > 

sup(spt(pn)). Let  y = Un<~ spt(pn). Then pick a condition q E P* so that  

y = spt(q) and for all j3 • spt(q), q(j3) = A~<~p~(fl).  II 

LEMMA 4.6: For a11 a < wl, E~ = {( f ,x)  • TI a < dom(f) = dora(x)} is dense 

in T. 

Proof: Let a < ~1 and ( f , x )  E T. Let 5 be such that  dora(f) = dom(x) = 5+1 .  

Let f* = f(5).  
Let G be a P* generic over V such that  f* • G. In V[G], AUS*/G is s tat ionary 

in wl. Let b C A U S* /G  be a closed bounded subset such that  g(5) < min(b) 

and o.t.(b) > c~. Let b a name for such a b and let p • G be such that  p < f* and 

p IF g"(5 + 1) U b C_ A U :~*, &g(5) < min(b), &a  < o.t.(b), 

and 

p IF b is closed and bounded. 

Back to the ground model V. Let b be a closed bounded subset of wl and let 

Po _< P be such that  Po IF b = b and max(b) < sup(spt(po)). Then let q < P0 be a 

decisive condition with respect to g1'(5 + 1) U b given by the previous lemma. 
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Let 77+1 = o.t.(b). Define gl: 5+1+7/+1 --+ wl by gl  [5+1 = g and g~: [5+1, ~] --+ 

b is the canonical order isomorphism. Then define f l :  (~ + 1 + ~ + 1 --+ P* by 

f l  [~+1 = f and for all/3 E [5,77], f;(/3) ---- q. Then ( f l , g l )  E T and ( f l ,g l )  E E~. 

This shows that  E~ is dense in T. I 

It follows that  the tree T has height Wl. 

Proof of Lemma 4.3: Let (f, x) E T be a condition. Let n be a sufficiently large 

regular cardinal. Let B C_ wl be stationary and let h: [H~] <~ --+ H~. We need 

to find a countable elementary model N -~ H~ such that  (f,  x) E N, and N is 

closed under h, N M wl E B and N has a strong master condition (g, y) _< (f,  x). 

CASE 1: B C_ A. 

Let N -< H~ be a countable model such that  N N wl E B, N is closed under 

h, and ( f , x )  E N.  Let (Dn[ n < w) be an enumeration of all dense subsets of T 

which are in N. Inductively pick (fn+l,  Xn+l) E DnMN such that  (fn+l, Xn+l) <_ 

(f~,x~)  with f0 = f and x0 = x. Let 5 = N M W l  and y = U~<~x~ u {(5,5)}. 

Let r = Un<~ f~. Then r: ~ -+ P* is such that  r(/3) _< r(/3') if 13' < /3  < 5. Let 

r* _< A~<~ r(/3) be such that  5 + 1  E spt(r*). Then r* I~-y ' (5+  1) C_ AUS* since 

5 E B C A .  

Let q E P* be a decisive condition with respect to the range of y such tha t  

q _< r* given by the decisive condition lemma. Then we define g: 5 + 1 --+ P* 

by g[~ = r and g(5) -- q. Then (g,y) E T and (g,y) < ( f , x )  is a strong master  

condition for N. 

CASE 2: B C_ wl - A. 

In this case, P* It- B M S* is stationary. 

LEMMA 4.7: Let p E P*. Then the set Up defined by 

N E Up i f  and only if  N -< H~ is countable, p E N,  and there is a strong 

master condition q E P* for N such that q <_ p and q Ik N M ~;1 E B M S* 

is stationary in [H~] ~. 

First notice tha t  for a countable model N,  if p is a strong master  condition for 

N, and if p does not force N M wl ~{ B M S*, then there is a stronger q which 

forces that  N M wl E B A S* and q is a strong master condition for N. 

Proo~ Assume the lemma does not hold. Then for some condition p E P* the 

set X v of all countable elementary submodets N such that  p E N,  and every 

strong master  condition q _< p for N forces N Awl  { B M S* must contain a 

closed and unbounded set in [H~]% Let h: [H <~ -+ H~ be such that  Ch C_ X v. 

Let W = H~ and U = [H~] ~. 
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Let p • G be a generic filter over V. In V[G], there is a countable model N • Ch 
such tha t  N -4 W, p • N,  N Awl • B n S*/G, and G is P* generic over N by 

Lemma 3.1. Let iV, t, & be names for the objects (i: w --+ N A P * ,  d = N n w l )  

and let r • G be a condition to force the facts on these objects. 

Back to the ground model V. Let q • P* be stronger than r such that  for 

some N • Ch, and some sequence t: w --+ N N P*, and some countable ordinal a ,  

we have 

e l f / V  = N, & = a = N n w l , V n < w t ( n ) = t ( n ) .  

Then q _< p is a strong master  condition for N • Ch and q I~- N Awl E B N S*. 

This is a contradiction. 

This finishes the proof of the lemma. I 

For each ( f , x )  • T, let f* be the last condition of f ,  namely, if 5 + 1  = 

dora(f) = dora(x), then f* = f(5). 
Let ( f ,x)  C T and h: [H~] <~ -+ H~. Let N -~ H~ be countable such that  N 

is closed under h, (f,  x) E N and N has a strong master  condition p < f* that  

forces N N wl • B n S*. 

Let (Dn] n ~ w) be an enumeration of all dense open sets of T which are 

in N.  

Let Co = {(g,y) • Do] (g,y) <_ ( f ,x)} .  
Let C~ = {g*] 3y(g, y) • Co}. Then C~ • N is dense below f*. Let g* • C~NN 

be such that  g* > p. Then take some gl,Yl so that  (gl,Yl) • Co A N  and g~ _> p. 

Inductively, define 

and 

Cn = {(g,y) • Dnl (g,y) _< (gn,Yn)} 

c :  = {g*l 3y(g,y) • 

Then Cn • N and C* • N i s  dense belowg*.  Let g* • C ' A N  be such that  

g* > p. Then take some gn+l, Yn+l so that  (gn+l, y~+l) • Cn N N and g*+l -> P" 

Let r = Un<o~ gn and let y = U~<o~ y,~ u {(N A wl, N Awl)}. 

Then p ~ A~<gn~l  r(/3) and p Ik y C_ A U ;~*. 

Let q < p be a decisive condition with respect to the range of y. Define g by 

g[gn~ = r and g(g  AWl) = q. Then (g,y) • T and (g,y) _< ( f ,x ) ,  and (g,y) is 

a strong master  condition for N. As g* I~- N N w~ • B N S*, N N ~1 • B. 

This finishes the proof. I 
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5. S o m e  r e m a r k s  

In an unpublished work, Woodin showed that  one could force Todorcevic's Strong 

Reflection Principle from a supercompact cardinal by revised countable support  

while preseving Souslin trees. Therefore, CBP is stronger than the Projective 

Stat ionary Reflection Principle. 

A restatement  of Theorem 2 of Todorcevic [18] shows that  if (*) every station- 

ary set S _C [w2] ~ reflects (i.e., there is some 5 < w2 such that  Sn[5] ~ is s tat ionary 

in [5]~), then ]l~ M : ]~ for every inner model M satisfying that  (w2) M = w2. (To 

see this, let M be an inner model such that  b~ M = c~2. Let (eal c~ < w2} be in M 

such tha t  e~: a --+ Ic~l be a bijection for a < w2. Let 

- 1 . 1 l ~  

Consider 

s = {x • cI w < < ¢ 

C L A I M :  If]~ M ~ ~, then S is projective stationary in [w2]~.) 

This follows from a theorem of Gitik-Velickovic that  [w2] ~ - M is projective 

stat ionary in [w2] ~ (see [8] Theorem 1.1 and [21], Lemma 3.15). 

Notice that  this set S never reflects. 

I t  then follows that  when a real is added to a model of (*) while preserving 1~1 

and ~2, then (*) must fail. In particular, the Semiproper Forcing Axiom, CBP, 

Strong Reflection Principle, Reflection Principle and Strong Chang's  Conjecture 

are all forced to be false when a Cohen real is added to a model in which they 

were true. Similarly, Rado's  Conjecture is forced to be false when a Cohen real 

is added to a model in which it was true. This shows that  all these strong 

properties are easily destroyed. However, another type of reflection is not so 

easily destroyed. 

FACT: Let ~ ~ w2 be regular. If every stationary S C {c~ < ~1 cf((~) : w} 
reflects, if P is the forcing adding one Cohen real, then it is forced that  every 

s tat ionary S C_ {c~ < ~1 cf(~)  = w} reflects. 

To see this, l e t /~  be a name such that  

p IF E C_ {c~ < ~1 cf(v~) = w} is stat ionary in a. 

Let (phi n < w} be an enumeration of all conditions below p. For each n < w, let 
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Then  there  is some n < w such tha t  E~ is s tat ionary.  Hence En reflects to some 

5 < t~. Then  p~ forces t h a t / ~  N 6 is s ta t ionary  in 6. 

In [1], A b r a h a m  and Shelah essentially prove tha t  (see [1] Theo rem 6) if M is 

an inner model  such tha t  RM = R2, then  S = ([w2]~) M is project ive s t a t ionary  

in [w2] ~. 

(To see this, let f :  [w2] <~ --+ w2. Let T C_ Wl be s tat ionary.  Let  wl < a < w2 

be such t ha t  a is closed under  f .  Let h E M be a bijection of a to R1. The  set 

C = { h " f i [  fi < wl} 

is in M and is a club in [a]~ in the  real world. Let 3' E T be such tha t  3' = wl NMt3" 

and h"3" is closed under  f .  Then  h~'7 E S. 

Hence S is project ive  stat ionary.)  | 
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